78 research outputs found

    Parallel Odor Processing by Two Anatomically Distinct Olfactory Bulb Target Structures

    Get PDF
    The olfactory cortex encompasses several anatomically distinct regions each hypothesized to provide differential representation and processing of specific odors. Studies exploring whether or not the diversity of olfactory bulb input to olfactory cortices has functional meaning, however, are lacking. Here we tested whether two anatomically major olfactory cortical structures, the olfactory tubercle (OT) and piriform cortex (PCX), differ in their neural representation and processing dynamics of a small set of diverse odors by performing in vivo extracellular recordings from the OT and PCX of anesthetized mice. We found a wealth of similarities between structures, including odor-evoked response magnitudes, breadth of odor tuning, and odor-evoked firing latencies. In contrast, only few differences between structures were found, including spontaneous activity rates and odor signal-to-noise ratios. These results suggest that despite major anatomical differences in innervation by olfactory bulb mitral/tufted cells, the basic features of odor representation and processing, at least within this limited odor set, are similar within the OT and PCX. We predict that the olfactory code follows a distributed processing stream in transmitting behaviorally and perceptually-relevant information from low-level stations

    A Specialized Odor Memory Buffer in Primary Olfactory Cortex

    Get PDF
    The neural substrates of olfactory working memory are unknown. We addressed the questions of whether olfactory working memory involves a verbal representation of the odor, or a sensory image of the odor, or both, and the location of the neural substrates of these processes.We used functional magnetic resonance imaging to measure activity in the brains of subjects who were remembering either nameable or unnameable odorants. We found a double dissociation whereby remembering nameable odorants was reflected in sustained activity in prefrontal language areas, and remembering unnameable odorants was reflected in sustained activity in primary olfactory cortex.These findings suggest a novel dedicated mechanism in primary olfactory cortex, where odor information is maintained in temporary storage to subserve ongoing tasks

    Inverse Current Source Density Method in Two Dimensions: Inferring Neural Activation from Multielectrode Recordings

    Get PDF
    The recent development of large multielectrode recording arrays has made it affordable for an increasing number of laboratories to record from multiple brain regions simultaneously. The development of analytical tools for array data, however, lags behind these technological advances in hardware. In this paper, we present a method based on forward modeling for estimating current source density from electrophysiological signals recorded on a two-dimensional grid using multi-electrode rectangular arrays. This new method, which we call two-dimensional inverse Current Source Density (iCSD 2D), is based upon and extends our previous one- and three-dimensional techniques. We test several variants of our method, both on surrogate data generated from a collection of Gaussian sources, and on model data from a population of layer 5 neocortical pyramidal neurons. We also apply the method to experimental data from the rat subiculum. The main advantages of the proposed method are the explicit specification of its assumptions, the possibility to include system-specific information as it becomes available, the ability to estimate CSD at the grid boundaries, and lower reconstruction errors when compared to the traditional approach. These features make iCSD 2D a substantial improvement over the approaches used so far and a powerful new tool for the analysis of multielectrode array data. We also provide a free GUI-based MATLAB toolbox to analyze and visualize our test data as well as user datasets

    Is there a space–time continuum in olfaction?

    Get PDF
    The coding of olfactory stimuli across a wide range of organisms may rely on fundamentally similar mechanisms in which a complement of specific odorant receptors on olfactory sensory neurons respond differentially to airborne chemicals to initiate the process by which specific odors are perceived. The question that we address in this review is the role of specific neurons in mediating this sensory system—an identity code—relative to the role that temporally specific responses across many neurons play in producing an olfactory perception—a temporal code. While information coded in specific neurons may be converted into a temporal code, it is also possible that temporal codes exist in the absence of response specificity for any particular neuron or subset of neurons. We review the data supporting these ideas, and we discuss the research perspectives that could help to reveal the mechanisms by which odorants become perceptions

    Local Field Potential Modeling Predicts Dense Activation in Cerebellar Granule Cells Clusters under LTP and LTD Control

    Get PDF
    Local field-potentials (LFPs) are generated by neuronal ensembles and contain information about the activity of single neurons. Here, the LFPs of the cerebellar granular layer and their changes during long-term synaptic plasticity (LTP and LTD) were recorded in response to punctate facial stimulation in the rat in vivo. The LFP comprised a trigeminal (T) and a cortical (C) wave. T and C, which derived from independent granule cell clusters, co-varied during LTP and LTD. To extract information about the underlying cellular activities, the LFP was reconstructed using a repetitive convolution (ReConv) of the extracellular potential generated by a detailed multicompartmental model of the granule cell. The mossy fiber input patterns were determined using a Blind Source Separation (BSS) algorithm. The major component of the LFP was generated by the granule cell spike Na+ current, which caused a powerful sink in the axon initial segment with the source located in the soma and dendrites. Reproducing the LFP changes observed during LTP and LTD required modifications in both release probability and intrinsic excitability at the mossy fiber-granule cells relay. Synaptic plasticity and Golgi cell feed-forward inhibition proved critical for controlling the percentage of active granule cells, which was 11% in standard conditions but ranged from 3% during LTD to 21% during LTP and raised over 50% when inhibition was reduced. The emerging picture is that of independent (but neighboring) trigeminal and cortical channels, in which synaptic plasticity and feed-forward inhibition effectively regulate the number of discharging granule cells and emitted spikes generating “dense” activity clusters in the cerebellar granular layer

    New features of connectivity in piriform cortex visualized by intracellular injection of pyramidal cells suggest that “primary” olfactory cortex functions like “association” cortex in other sensory systems

    No full text
    Associational connections of pyramidal cells in rat posterior piriform cortex were studied by direct visualization of axons stained by intracellular injection in vivo. The results revealed that individual cells have widespread axonal arbors that extend over nearly the full length of the cerebral hemisphere. Within piriform cortex these arbors are highly distributed with no regularly arranged patchy concentrations like those associated with the columnar organization in other primary sensory areas (i.e., where periodically arranged sets of cells have common response properties, inputs, and outputs). A lack of columnar organization was also indicated by a marked disparity in the intrinsic projection patterns of neighboring injected cells. Analysis of axonal branching patterns, bouton distributions, and dendritic arbors suggested that each pyramidal cell makes a small number of synaptic contacts on a large number (�1000) of other cells in piriform cortex at disparat

    Unitary inhibitory field potentials in the CA3 region of rat hippocampus

    No full text
    Glickfeld and colleagues (2009) suggested that single hippocampal interneurones generate field potentials at monosynaptic latencies. We pursued this obervation in simultaneous intracellular and multiple extracellular records from the CA3 region of rat hippocampal slices. We confirmed that interneurones evoked field potentials at monosynaptic latencies. Pyramidal cells initiated disynaptic inhibitory field potentials, but did not initiate detectable monosynaptic excitatory fields. We confirmed that inhibitory fields were GABAergic in nature and showed they were suppressed at low external Cl−, suggesting they originate at postsynaptic sites. Field potentials generated by a single interneurone were detected at multiple sites over distances of more than 800 μm along the stratum pyramidale of the CA3 region. We used arrays of extracellular electrodes to examine amplitude distributions of spontaneous inhibitory fields recorded at sites orthogonal to or along the CA3 stratum pyramidale. Cluster analysis of spatially distributed inhibitory field events let us separate events generated by interneurones terminating on distinct zones of somato-dendritic axis. Events generated at dendritic sites had similar amplitudes but occurred less frequently and had somewhat slower kinetics than perisomatic events generated near the stratum pyramidale. In records from multiple sites in the CA3 stratum pyramidale, we distinguished inhibitory fields that seemed to be initiated by interneurones with spatially distinct axonal arborisations
    corecore